

Our northern runway: making best use of Gatwick

111-24

Preliminary Environmental Information Report Appendix 15.4.1: Climate Change and Carbon Technical Appendix September 2021

Table of Contents

1	Introduction	1
2	Baseline Development	1
3	Future Baseline Information	1
4	Baseline Methodology	1
5	2018 Baseline	5
6	Future Baseline and Assessment Assumptions	6
7	Future Baseline Emissions by Category	8
8	Assessment of Effects from Project Construction	11
9	Assessment of Effects from Operation with the Project	13
10	Assessment of 'Worst Case' Year	15
11	Projected UK Aviation Emissions to 2050	15
12	References	15
13	Glossary	16

Introduction 1

1.1 General

- This document forms Appendix 15.4.1 of the Preliminary 1.1.1 Environmental Information Report (PEIR) prepared on behalf Gatwick Airport Limited (GAL). The PEIR presents the prelim findings of the Environmental Impact Assessment (EIA) proce for the proposal to make best use of Gatwick Airport's existing runways (referred to within this report as 'the Project'). The Project proposes alterations to the existing northern runway which, together with the lifting of the current restrictions on its use, would enable dual runway operations. The Project include the development of a range of infrastructure and facilities whi with the alterations to the northern runway, would enable the airport passenger and aircraft operations to increase. Further details regarding the components of the Project can be found Chapter 5: Project Description.
- 1.1.2 This document provides the Climate Change and Carbon Technical Appendix for the Project.

Baseline Development 2

- 2.1 Data Sources for 2018 Baseline
- 2.1.1 The following activity data sources were used to develop the 2018 baseline.

Table 2.1.1: 2018 Baseline Data Sources

Data	Source	Provider
2018 air traffic movements (ATMs)	2018 ATMs Full List	Gatwick Airport Ltd
Passenger surface	2018 Passenger	Civil Aviation Authority
access	survey report	(CAA, 2018)
Staff surface access	Gatwick Airport Staff survey 2016	Gatwick Airport Ltd
Freight surface access	Gatwick's Economic Contribution through Trade and Investment (Oxford Economics, 2018)	Gatwick Airport Ltd

	Data	Source	Provider		C
If of minary	London Gatwick (LGW) 2018 corporate Greenhouse Gas (GHG) reporting	Gatwick Airport Ltd 2018 Greenhouse Gas Assessment	Gatwick Airport Ltd		F a F v
cess ng	EU ETS reporting for Gatwick Airport Ltd for 2018	2018 ETS Fuel Report	Gatwick Airport Ltd	-	c e N
ts udes	3 rd party energy consumption	Written enquiries to 3 rd parties within the airport	Gatwick Airport Ltd		e E a
hich, e	Consented project parameters	Project description	Gatwick Airport Ltd		с р
er id in	GHG intensity factors	Greenhouse gas reporting: conversion factors 2018	Department for Business, Energy & Industrial Strategy (BEIS)	-	p V

Future Baseline Information 3

3.1 Data Sources for Future Baseline

In addition to data sources for the 2018 baseline the following 3.1.1 data sources and forecasts have informed the future baseline development.

Table 3.1.1: 2018 Future Baseline Data Sources

Data	Source	Provider
Forecast ATMs	Development Consent Order (DCO) Primary Forecasts – Annual data sheets	Gatwick Airport Ltd
Passenger surface access	DCO Secondary Forecasts – Annual data sheets	Gatwick Airport Ltd
Staff surface access	DCO Secondary Forecasts – Annual data sheets	Gatwick Airport Ltd

Data	Source	Provider
Freight surface access	DCO Secondary Forecasts – Annual data sheets	Gatwick Airport Ltd
Project programme, workforce estimates, construction plant estimates	ConVehMod2021 v1.0	Gatwick Airport Ltd
Material quantity estimated by project	Portfolio Quantities	Gatwick Airport Ltd
Building footprints / areas, hotel capacity, car parking, consented projects	Project Description	Gatwick Airport Ltd
Water usage profile	Water usage profile	Gatwick Airport Ltd
GHG intensity factors	Greenhouse gas reporting: conversion factors 2021	Department for Business, Energy & Industrial Strategy (BEIS, 2021)

Baseline Methodology

Methodology Notes

impacts.

4

4.1

4.1.1

An explanation of the methodology and assumptions for each element of the baseline assessment is set out below. Specific details on the timing and shift working on specific parts of the Project are not yet developed. Conservative assumptions have been made at a Project-wide level to estimate GHG emissions

Table 4.1.1: 2018 Metho		Activity	Methodology	Activity
Activity	Methodology		International CCD emissions to provide a	
			forecast for the relevant year.	
Air transport		Surface access		
GHGs arising from the	Emissions from LTOs were calculated in line	Passenger surface	Passenger survey information developed by the	
landing and takeoff	with the methodology as set out in Chapter 13:		CAA provides a percentage breakdown of	
(LTO) cycle in the	Air Quality.	access	source/destination for passengers, and a mode	
vicinity of the airport			split by vehicle type of journeys. Based on	
GHGs arising from the	ATM data for 2018 was provided by Gatwick		passenger numbers this was converted into an	
climb, cruise and	airport detailing the source/destination for all		estimated km distance travel by mode for 2018.	
decent (CCD) phases	flights in 2018 along with details of aircraft type.		For private cars occupancy was assumed at 2.4	
of outgoing flights only	These flights were then classed as UK/EU-		people per vehicle, and for taxi usage assumed	
	ETS/non-EU International, and each was		at 1.8 people per vehicle. BEIS conversion	
	assigned a modelling category reflecting the		factors were then used to develop a footprint for	
	type of aircraft/engine combination used. The		2018. Cars were assumed to be 'average	
	EMEP/EEA Air Pollution Inventory Guidebook		vehicle' for private cars. Future passenger	
	Additional File 1.A.3.a Aviation – Annex 5 –		numbers for the period 2020-2038 were then	
	Master emission calculator 2019 (European		used to scale total vehicle km by transport	
	Environment Agency, 2019) was then used to		mode for future years. No mode shift has been	
	determine CCD emissions for outgoing flights		assumed for the PEIR assessment although it is	
	only based on the aircraft modelling category,		expected to incorporate mitigation of surface	
	and on the estimated distance between Gatwick		access emissions into the final ES. The	
	Airport and the destination airport, with an		efficiency and fleet mix for future years was	Freight surface access
	allowance for additional distance due to		based on Department for Transport (DfT)	Treight Surface access
	elevation from the earth's surface and impacts		forecasts as set out in Table 6.3.1; GHG	
	of non-direct routes (5% for short-haul flights and 6% for long-haul flights). Based on these		emissions were calculated using BEIS carbon	
	the EMEP/EEA calculation methodology		factors for company reporting (using 2018	
	provided estimates of CO ₂ emissions from each		factors for the 2018 baseline, and using 2021	
	modelling category. These were aggregated to		factors for future years). Calculation of	
	provide summary emissions totals for UK, EU		emissions from road vehicles included all of tail	
	ETS and non-EU International flights for the		pipe emissions, 'Wheel-to-tank' emissions, and	
	baseline year of 2018. Future forecast ATMs		Transmission and Distribution losses for	
	were then used to develop an estimate of future		electricity. An allowance was made to reflect	
	flight distances by aircraft modelling category		improvements in fuel efficiency of vehicles,	
	(scaling 2018 total flight distances per modelling		taken from WebTAG data book Table A1.3.10	
	category by ATMs for UK, EU ETS and non-EU		(DfT, 2021b).	
	International categories) for 2029, 2032 and	Staff surface access	Staff transport details for 2016 were received	
	2038 to scale the UK, EU and non-EU		from the transport modelling consultants, based	
			on a 2016 staff travel survey, providing a modal	L

¹ <u>https://www.gatwickairport.com/globalassets/business--community/new-community--</u> sustainability/economy/20180621-gatwick-trade-report_oe_web.pdf

Preliminary Environmental Information Report: September 2021 Appendix 15.4.1: Climate Change and Carbon Technical Appendix

Methodology

shift and distance breakdown across all employees based at Gatwick Airport (GAL and also 3rd party staff). The data represents a single/typical day in June 2016. No allowance was made for fluctuations across the year, this was assumed to be an average day in the year. Based on this, and using BEIS carbon factors, the 2018 baseline was developed. The staff surface access future baseline was then calculated based on scaling for future years based on passenger numbers under each scenario. The efficiency and fleet mix for future years was based on DfT forecasts as set out in Table 6.3.1; GHG emissions were calculated using BEIS carbon factors for company reporting. Calculation of emissions from road vehicles included all of tail pipe emissions, 'Wheel-to-tank' emissions, and Transmissions and Distribution losses for electricity. An allowance was made to reflect improvements in fuel efficiency of vehicles, taken from WebTAG data book Table A1.3.10 (DfT, 2021b). For this PEIR only cargo freight has been estimated. Tonnage of cargo freight was obtained from Gatwick Airport Ltd and an estimated transportation distance developed from the Oxford Economics study into Trade and Investment¹. Transport was assumed as 100% Heavy Goods Vehicles (HGV) for an 'average laden' vehicle. Emissions were calculated using BEIS carbon factors. Emissions arising from freight associated with retail are not included in this assessment but will be include in the full ES. Decarbonisation effects on freight transport have not been included in the estimation of future years within this PEIR.

Activity	Methodology	Activity	Methodology	Activity
Use of airport, buildings and facilities			from these have been calculated using the BEIS	GHGs arising from
Energy and fuel use for buildings, Ground Support Equipment (GSE), Auxiliary Power Units (APUs), Ground Power Units (GPU), and Fixed Electrical Ground Power (FEGP)	The 2018 baseline for the assessment was developed based on reported energy consumption for the airport and 3 rd parties based on the airport which have direct energy supply contracts. The future baseline for the airport energy consumption was developed based on assuming like-for-like energy consumption for existing buildings, plus the additional heating/cooling/power loads from new development. Further details on the Preliminary Energy Assessment and Strategy can be found in Appendix 5.2.1 of the PEIR.		carbon factors for 'Waste treatment' for Commercial and Industrial waste. The future baseline has assumed no change in the emissions intensity per m ³ supplied. A known limitation of this assessment is that it does not reflect all wastes from 3 rd party operators within the airport, some of which have direct waste management contracts. Waste arisings also exclude those from British Airways and Virgin hangars, cargo facilities, and maintenance- related aircraft waste. Given the overall contribution from known waste quantities it is not expected that these omissions will materially change the assessment of impact.	energy use in construction activities (ie operation of plant etc) GHGs arising from transport and disposal of construction and
Firefighting activities	These emissions have been developed using the methodology as set out in the Chapter 13: Air Quality.	Other aviation fuel usage	These emissions have been calculated using the methodology as set out in Chapter 13: Air Quality.	demolition waste
Aircraft engine testing	These emissions have been developed using the methodology as set out in Chapter 13: Air	Construction emissions		
Potable water supply	Quality. Potable water supply has been forecast based on scaling the 2018 baseline consumption by passenger numbers. GHG emissions arising from these have been calculated using the BEIS carbon factor for 'Water supply'. The future	GHGs arising from the extraction, processing and manufacturing of construction materials	Floor areas of proposed development within the Capital Investment Plan as provided by Gatwick Airport Ltd and benchmarks used for estimating quantities of key construction materials within those building. Material quantities were converted to tonnes using typical density	
Pumping and treatment of wastewater	 baseline has assumed no change in the emissions intensity per m³ supplied. Energy consumption associated with pumping of wastewater has been included in the energy modelling for the airport. 		factors. Conversion factors from the ICE 3.0 database were used to calculate embodied emissions from the extraction, processing, manufacture of materials on a cradle-gate basis.	GHGs arising from surface access for construction staff arising from the Project
	Emissions from wastewater treatment are based on scaling the 2018 wastewater discharge volumes by passenger numbers. GHG emissions arising from these have been calculated using the BEIS carbon factor for 'Water treatment'. The future baseline has assumed no change in the emissions intensity per m ³ supplied.	GHGs arising from transportation of materials from factory to site	Aggregated masses of construction materials were used based on the calculation process set out above. Based on typical HGV loading of 33 tonnes the number of vehicle trips required was calculated. An estimated distance of 330 km was used in the absence of more detailed information to calculate vehicle-km. Carbon emissions were then calculated based	
Waste treatment and disposal	Emissions from waste management are based on scaling the 2018 waste arisings volumes by passenger numbers. GHG emissions arising		on BEIS conversion factors for average laden articulated HGV. Vehicle movements were assessed as two-way trips (at average loading)	

Methodology

The estimated peak number of operators per month was obtained from the GAL Construction Team for the airport construction project. An assumption of 8 hours of plant operation per day, and 5 day working, was used to estimate total aggregated working hours of plant per year. Five representative plant types were used and published fuel consumption rates per hour of operation were used to calculate fuel consumption, which were then multiplied by BEIS conversion factors to develop an estimate of CO₂e emissions.

Estimates of waste arisings from demolition and excavation were developed from the project material estimate provided by the GAL Construction Team. Waste quantities were averaged across the development period and an assumption made of 70% recycling offsite and 30% disposal to landfill. Waste quantities were multiplied by BEIS conversion factors for waste disposal to develop an estimate of CO2e emissions. For landfill the conversion factors cover emissions from waste collection, transport and landfill emissions and for recycling the conversion factors cover transport to an energy recovery or materials reclamation facility. Peak workforce values were provided by GAL Construction Team. It is assumed that no staff live onsite during construction and all staff travel to work each day. Working days are assumed to follow a 5-day per week pattern. An average commuting distance of 35km was used representing mean distance for worker travel to site in the South East (CITB, 2019). A reasonable worst case assumption of 100% single occupancy car transport was used and BEIS conversion factors for car travel were used to estimate CO2e emissions.

4.2 **Carbon Intensity Factors**

- 4.2.1 The 2018 baseline GHG emissions arising from activities are based on the Greenhouse gas reporting: conversion factors 2018² developed by BEIS. These factors allow for the conversion of 'activity units' into emissions of either CO2 and/or CO2e. The conversion factors used in this assessment are presented in Table 4.2.1. For future baseline modelling the most recent BEIS factors (from 2021³) have been used.
- 4.2.2 It is acknowledged that the 2021 factors will change in future years, with implications for future forecast GHG emission. Where external trends suggest a continual reduction in GHG factors (eg through grid decarbonisation) then these have been modelled over time and incorporated into the future GHG emissions calculations.
- 4.2.3 The factors for electricity consumption and road vehicle use are influenced by external factors which is discussed in Section 6.

Activity	2018 factor	2021 factor	Unit
Average laden HGV (all HGVs)	0.11360	0.1075	kgCO ₂ e/tonne.km
Average Diesel car	0.17753	0.16843	kgCO ₂ e/km
Average Petrol car	0.18368	0.17431	kgCO ₂ e/km
Average Hybrid car	0.12568	0.11952	kgCO ₂ e/km
Average PHEV	0.12012	0.07054	kgCO ₂ e/km
Average Motorbike	0.11529	0.11355	kgCO ₂ e/km
Taxi - Regular	0.15344	0.14876	kgCO ₂ e/passenger.k m
Taxi – Black cab	0.21420	0.20416	kgCO ₂ e/passenger.k m
Average local Bus	0.10097	0.10227	kgCO ₂ e/passenger.k m
National Rail	0.04424	0.03594	kgCO ₂ e/passenger.k m

Table 4.2.1 2018 BEIS Conversion Factors

Activity	2018 factor	2021 factor	Unit
Wheel-to-tank Average Petrol Car	0.04985	0.04104	kgCO₂e/km
Wheel-to-tank Average Diesel Car	0.04196	0.04885	kgCO ₂ e/km
Wheel-to-tank Average Hybrid Car	0.03186	0.03132	kgCO ₂ e/km
Wheel-to-tank Average PHEV Car	0.02651	0.02657	kgCO2e/km
Consumption of aviation fuel	2.53883	2.54514	kgCO ₂ e/litre
Consumption of aviation fuel ⁴	2.51370	2.51973	kgCO ₂ /litre
Grid electricity	0.28307	0.21233	kgCO ₂ e/kWh
Natural gas consumption in buildings	0.20437	0.20297	kgCO₂e/kWh
Diesel consumption in plant (average biofuel blend)	0.26349	0.25165	kgCO2e/kWh
Potable water supply	0.344	0.149	kgCO ₂ e/m3
Wastewater treatment	0.708	0.272	kgCO ₂ e/m3
Waste disposal: Recycling (average construction closed loop)	1.0192	0.989	kgCO2e/tonne
Waste disposal: Landfill (average construction) - assumed	1.277	1.239	kgCO2e/tonne

Activity		2018 factor	2021 factor	Unit
Waste disposal: Recycling (Commercial and Industrial waste closed loop)		21.3842	21.294	kgCO₂e/tonne
Waste disposal: Landfill (Commercial and Industrial waste)		99.7729	467.046	kgCO2e/tonne
Waste disposal: Landfill (typical, excluding soils, mineral oil, plasterboard, tyres, wood)		1.277	1.239	kgCO2e/tonne

factors will differ from these, and in many cases will reduce in line with wider national trends towards decarbonisation, and through improved efficiency of vehicles etc. The significant expected future effects (electricity decarbonisation, vehicle efficiency) are reflected in the individual future baseline and assessment models.

4.2.5

The estimation of GHG emission arising from the extraction, processing and manufacture of construction materials are based on the emissions factors set out in Table 5.1.2. No assessment of mitigation through the choice of specific materials has yet been made - this will be considered in the ES when the Project design is more developed.

Preliminary Environmental Information Report: September 2021 Appendix 15.4.1: Climate Change and Carbon Technical Appendix

² https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2018

Table 4.2.2 Construction Material Assumptions

Material	ICE Database ⁵ Description	Embodied emissions (kgCO ₂ e/kg)	Source
Pavement concrete	General in-situ concrete	0.10	ICE 3.0 (2019)
Structural concrete	25% blast furnace slag, RC40/50	0.14	ICE 3.0 (2019)
Mastic asphalt	Mastic asphalt	0.10	ICE 3.0 (2019)
Hot rolled asphalt	Asphalt, for roads	0.02	ICE 3.0 (2019)
Aggregate	Aggregates and sand	0.02	ICE 3.0 (2019)
Soil	General (rammed) soil	0.02	ICE 3.0 (2019)
Aluminium	Aluminium sheet, European mix	6.58	ICE 3.0 (2019)
Steel	Engineering steel	1.27	ICE 3.0 (2019)

2018 Baseline 5

5.1 Summary of Baseline Emissions

5.1.1 The 2018 baseline is set out in Table 5.1.1 to Table 5.1.3. Construction emissions are assumed as zero for the baseline assessment.

Table 5.1.1: 2018 Baseline: Air Transport

Activity	2018 baseline emissions (MtCO ₂ e)
Air transport	
UK domestic flights	
LTO	0.027
CCD	0.050
Total	0.077
Non-domestic EEA flights	
LTO	0.225
CCD	1.346

⁵ Material descriptions as set out in Circular Ecology Ltd. & University of Bath (2019) Embodied energy and carbon - The ICE database version 3.

Activity	2018 baseline emissions (MtCO ₂ e)
Total	1.571
Ion-EEA International flights	
ТО	0.146
CD	2.927
Fotal	3.073
Traded flight emissions (UK+EEA)	1.648
Ion-traded flight emissions (Non EEA nternational)	3.073
Total international flight emissions	4.644
Fotal air transport emissions	4.721

Table 5.1.2: 2018 baseline: Surface Access

Activity	2018 baseline emissions (MtCO ₂ e)	
Surface access		
Passenger surface access	0.256	5.2.4
Staff surface access	0.048	
Freight surface access	0.004	
Total surface access emissions	0.308	

Table 5.1.3: 2018 Baseline: Other Usage

Activity	2018 baseline emissions (MtCO ₂ e)
Use of airport, buildings and facilities ('o	ther usage')
Energy and fuel use for buildings, GSE, APUs, GPU, FEGP, firefighting and engine testing	0.0799
Potable water supply	0.0002
Pumping and treatment of wastewater	0.0005
Waste treatment and disposal	0.0004
Total other usage emissions	0.0810

Our northern runway: making best use of Gatwick

Traded and Non-traded Sector Emissions

in 2021.

Traded emissions included in this reporting (under both the historic EU ETS participation, and the current UK ETS) are:

- intra-EEA flights
- reporting

5.2.3

operations of Gatwick Airport).

The majority of EU ETS emissions associated with operation of Gatwick Airport, excluding emissions from aviation, arise from combustion of natural gas. In 2018 EU ETS reporting for Gatwick Airport Ltd the emissions from natural gas consumption represented 98% of reported EU ETS emissions. A small portion (2%) arises from use of fuels (gas oil and propane). EU ETS emissions for 3rd parties operating in the airport have not been estimated and are assumed to be small compared to the traded sector emissions from Gatwick Airport Ltd. Emissions associated with electricity for use in private electric vehicles (from transmission and distribution) have been excluded from the reported traded emissions.

5.2.5

The Airports National Policy Statement (NPS) (Department for Transport, 2018), requires emissions to be split into traded sector and non-traded sector. 'Traded' emissions are those that fall under Emissions Trading schemes. Until 2021 the UK participated in the EU ETS, which was replaced with the UK ETS

Emissions for departing flights which are domestic flights, or

Emissions which fall under Gatwick Airport Ltd EU ETS

Other emissions which fall under EU or UK ETS are considered beyond the scope of this assessment (including industrial emissions from manufacturing facilities for construction materials, and emissions associated with power generation outside the

The 2018 traded sector emissions are shown in Table 5.2.1.

Table 5.2.1: 2018 Traded Sector Emissions

Emissions category	2018 baseline emissions (MtCO2e)	
Traded emissions		
Departing domestic and intra-EEU flights	1.648	
GAL EU ETS emissions	0.010	
Total traded emissions	1.658	

Future Baseline and Assessment 6 Assumptions

6.1 Methodology of Future Baseline and Assessments

- 6.1.1 Generally the development of the future baseline and the assessment scenarios follow the same approach as for development of the baseline year, albeit activity data for future years is developed from a range of data sources provided by Gatwick Airport Ltd and the project design team, including specialists such as transport consultants and air quality specialists.
- 6.1.2 Construction was zero in the 2018 baseline, and for the future baseline considers only projects that are expected to be brought forward under existing consenting. The methodology for assessing the future baseline and assessment for construction activities is set out below.

Table 6.1.1: Future baseline and assessment assumptions

Activity	Methodology
Construction	
GHGs arising from the	Floor areas of proposed development were
extraction, processing and manufacturing of	provided by Gatwick Airport Ltd and benchmarks used for estimating quantities of
construction materials	key construction materials within those building.
	Material quantities were converted to tonnes using typical density factors. Conversion factors
	from the ICE 3.0 database were used to
	calculate embodied emissions from the

Activity	Methodology	Activity	Methodology	
	extraction, processing, manufacture of materials on a cradle-gate basis.	GHGs arising from surface access for	Peak workforce values were provided by GAL Construction Team. It is assumed that no staff	
GHGs arising from	Aggregated masses of construction materials	construction staff	live onsite during construction and all staff trave	
transportation of	were used based on the calculation process set	arising from the Project	to work each day. Working days are assumed to	
materials from factory	out above. Based on typical HGV loading of		follow a 5-day per week pattern. An average	
to site	33 tonnes the number of vehicle trips required		commuting distance of 35km was used	
	was calculated. An estimated distance of		representing mean distance for worker travel to	
	330 km was used in the absence of more		site in the South East (CITB, 2019). A	
	detailed information to calculate vehicle-km.		reasonable worst case assumption of 100%	
	Carbon emissions were then calculated based		single occupancy car transport was used and	
	on BEIS conversion factors for average laden		BEIS conversion factors for car travel were	
	articulated HGV. Vehicle movements were		used to estimate CO2e emissions.	
	assessed as two-way trips (one full vehicle and			
	one empty vehicle)	6.2 Grid decarbo	onisation assumptions	
GHGs arising from	The estimated peak number of operators per	6.2.1 The future dec	arbonisation of the national grid is an influence o	
energy use in	month was obtained from the GAL Construction	future emissions from the airport. The source of inform		
construction activities	Team for the airport construction project. An	for this is the UK Government Green Book supplementa		
(ie operation of plant	assumption of 8 hours of plant operation per	guidance: valuation of energy use and greenhouse g		
etc)	day, and 5 day working, was used to estimate	carbon intensity of grid electricity in the future.		
	total aggregated working hours of plant per			
	year. Five representative plant types were used	• •	ed in April 2019; from which Table 6.2.1 provides ies for grid electricity.	
	and published fuel consumption rates per hour	Carbon Intensit	les for grid electricity.	
	of operation were used to calculate fuel		Supplementary Guidance – Table 1: Grid	
	consumption, which were then multiplied by		blic Sector Consumption-Based Emissions	
	BEIS conversion factors to develop an estimate of CO ₂ e emissions.	Factors (extract)		
GHGs arising from	Estimates of waste arisings from demolition and	Year	Factor (kgCO₂e/kWh)	
transport and disposal	excavation were developed from the project	2018	0.177	
of construction and	material estimate provided by the GAL	2019	0.143	
demolition waste	Construction Team. Waste quantities were	2020	0.138	
	averaged across the development period and	2021	0.113	
	an assumption made of 70% recycling offsite	2022	0.105	
	and 30% disposal to landfill. Waste quantities	adfill. Waste quantities 0 110		
	were multiplied by BEIS conversion factors for	2024	0.102	
	waste disposal to develop an estimate of CO2e	2025	0.103	
	emissions. For landfill the conversion factors	2026	0.097	
	cover emissions from waste collection, transport	2027	0.103	
	and landfill emissions and for recycling the conversion factors cover transport to an energy	2028	0.098	
	recovery or materials reclamation facility.	2029	0.090	

Year	Factor (kgCO ₂ e/kWh)	No. of the second se
2031	0.072	Year
2032	0.060	
2033	0.056	2038
2034	0.048	C 4
2035	0.040	6.4
2036	0.040	6.4.1
2037	0.040	
2038	0.040	

Future Vehicle Fleet 6.3

The future make-up of the UK vehicle fleet has been taken from 6.3.1 the UK Government TAG data book Table A 1.3.9 (BEIS, 2021a) which provides proportions of vehicle kilometres by fuel type for 6.5 the period to 2038. The data are represented in Table 6.3.1.

Table 6.3.1: Web TAG Data Book – Table A 1.3.9 (extract)

Maan	Cars			
Year	Petrol	Diesel	Electric	Table
2018	48.10%	51.20%	0.70%	
2019	48.34%	50.72%	0.93%	
2020	48.69%	50.11%	1.19%	Build
2021	48.97%	49.32%	1.71%	
2022	49.25%	48.40%	2.35%	Tarra
2023	49.53%	47.33%	3.13%	Termi
2024	49.80%	46.13%	4.08%	Pier
2025	49.97%	44.74%	5.28%	Multi
2026	50.00%	43.23%	6.76%	Ancill
2027	49.89%	41.64%	8.47%	6.6
2028	49.67%	40.05%	10.28%	0.0
2029	49.33%	38.48%	12.19%	6.6.1
2030	48.80%	36.91%	14.29%	
2031	48.17%	35.47%	16.36%	
2032	47.45%	34.16%	18.39%	
2033	46.65%	32.97%	20.38%	
2034	45.79%	31.86%	22.34%	
2035	44.90%	30.86%	24.24%	6.6.2
2036	43.99%	29.93%	26.08%	
2037	43.06%	29.07%	27.87%	

Year	Cars		
i cai	Petrol	Diesel	Electric
2038	42.13%	28.28%	29.59%

Surface Access Assumptions

The future surface access passenger/vehicle transport modes and distances have been linearly scaled in line with forecast passenger growth. The modal split has been assumed to remain the same as for the 2018 baseline, although this assumption will be re-examined as part of the production of the final ES. Resultant emissions have been calculated accounting for the changes in future vehicle fleet and improvements in vehicle efficiency set out in Table 6.3.1.

Construction Material Assumptions

6.5.1 In the absence of detailed design information benchmark building and infrastructure metrics set out in Table 6.5.1 have been applied to convert footprint estimates to material quantities.

Table 6.5.1: Assumed Building Material Quantity Benchmarks

Building type	Concrete (m3/m2)	Steel section & beams (tonne/m2)	Cladding (m2/m2)	Roofing (m2/m2)
Terminal	1.149	0.212	0.101	0.274
Pier	1.475	0.084	0.475	0.274
Multi Storey Car Park	0.617	0.046	0.038	0.274
Ancillary	1.475	0.084	0.475	0.274

Construction Waste Generation

All forecast material arising from demolition, breakout of existing surfaces, or excavation is assumed to be disposed offsite (albeit with high recycling rates). In reality mitigation is likely to identify on-site reuse/recycling of much of this material, however, that reuse has not taken into account within the PEIR. It will be considered and assessed within the ES.

No assumption has been made at this stage for construction material wastage and this has been assumed as zero for the PEIR assessment. This will be reviewed in preparation for the ES.

6.7

6.7.1

6.8

Freight, Construction Transport and Waste Transport

assessment period.

Energy Strategy

6.8.1	Gatwick airport is The interim outpo future baseline a and fuel use in th
6.8.2	The energy moden new developmen and the associate associated with i do-minimum and
6.8.3	The energy mode

Table 6.8.1: Energy Model Assumptions

Energy component	Modelling assumption	
Energy efficiency improvements	Limited improvements to the existing estate	
New building performance	20% improvement in new buildings over current benchmarks	
Heating strategy (existing buildings)	Heating technology remains as is, but with improvements in gas boiler efficiencies	
Heating strategy (new buildings)	Use of air source heat pumps supplying 100% of annual heat	
Cooling strategy (existing and new)	Increase in cooling plant efficiency by 21% between 2020 and 2035	
Electrification of vehic	es 30% electrification of airside vehicles by 2040	
Onsite solar photovolt	aic Installation of 5MWp on canopies on some open car parking areas	
6.9 Aviation Emissions		
	.1 Aviation emissions in future years have been assumed to grow ir line with the main project forecasts and have been calculated to	

Our northern runway: making best use of Gatwick

Vehicle transport distances have been calculated based on forecast growth in freight, and the construction and waste estimates set out above. The efficiency and fleet fuel mix of HGVs has been assumed as constant throughout the

> s currently developing its future energy strategy. uts from this work have been used to inform the and future assessed scenarios in terms of energy he airport.

lel has included forecast energy demand from nt, as set out in Chapter 5: Project Description, ted increases in heating and cooling loads increase passengers and ATMs under both the d the do-something scenarios.

lelling has considered a number of measures to reduce the overall building energy emissions in future. These are summarised in Table 6.8.1.

reflect the expected split in domestic and international flights and aircraft fleet mix.

6.9.2 Aircraft efficiencies are represented within calculations up to 2038 7.2.4 based on expected changes in aircraft fleet through this period. After 2038 aircraft emissions are calculated based on changes in ATMs only through to 2050, and are additionally calculated incorporating a 1.4% p.a. efficiency in line with the Balanced Pathway Scenario within the CCC Sixth Carbon Budget report (CCC, 2020).

Future Baseline Emissions by Category 7

7.1 Introduction

The future baseline, in the absence of the Project, has been 7.1.1 developed in line with the methodology and assumptions set out in Section 6 of this Appendix. The tables below set out the detailed estimation of emission for the future baseline scenario.

7.2 Construction

- 7.2.1 Several construction projects will be taken forward in the absence of the Project, under existing consents, as detailed in the Project Description in Chapter 5. Principally these are:
 - the construction of an extension to Pier 6
 - construction of an extension to South Terminal International Departures
 - construction of two multi-storey car parks
 - extensions to two hotels within the boundary of the airport
- 7.2.2 Other consented works have not been included in the future baseline assessment at this stage but will be reviewed and considered for inclusion in the Environmental Statement. These are not considered likely to be of such scale as to affect the overall assessment of impact.
- 7.2.3 Construction related emissions have been calculated across six source categories:
 - embodied carbon in the extraction and manufacture of materials/products;
 - operation of plant for construction, including operation of the construction compounds;
 - transportation of construction materials to the Project site;
 - transportation of construction workers to/from the Project site;

- construction waste management; and
- water us in construction.
- The future construction-related emissions for the Project are presented in these categories in Table 7.2.1 to Table 7.2.6.

Table 7.2.1: Project Construction Emissions for Embodied Carbon of Materials

Year	Embodied carbon of construction materials (cradle-gate) ktCO2e
2019	0.00
2020	0.00
2021	26.41
2022	26.41
2023	11.83
2024	0.00
2025	0.00
2026	0.00
2027	0.00
2028	0.00
2029	0.00
2030	0.00
2031	0.00
2032	0.00
2033	0.00
2034	0.00
2035	0.00
2036	0.00
2037	0.00
2038	0.00

Table 7.2.2: Project Construction Emissions for Energy Use during Construction

Year	Construction energy (ktCO2e)
2019	0.00
2020	0.00
2021	7.73
2022	7.73
2023	3.46
2024	0.00
2025	0.00

Year	Constr
2026	0.00
2027	0.00
2028	0.00
2029	0.00
2030	0.00
2031	0.00
2032	0.00
2033	0.00
2034	0.00
2035	0.00
2036	0.00
2037	0.00
2038	0.00

Materials

Year	Trans
2019	0.00
2020	0.00
2021	4.88
2022	4.88
2023	2.18
2024	0.00
2025	0.00
2026	0.00
2027	0.00
2028	0.00
2029	0.00
2030	0.00
2031	0.00
2032	0.00
2033	0.00
2034	0.00
2035	0.00
2036	0.00
2037	0.00
2038	0.00

Our northern runway: making best use of Gatwick

ruction energy (ktCO2e)

Table 7.2.3: Project Construction Emissions for Transportation of

oortation of construction materials (ktCO2e)

Table 7.2.4: Project Construction Emissions for Commuting of **Construction Workers**

Year	Construction worker transport (ktCO2e)
2019	0.00
2020	0.00
2021	0.79
2022	0.79
2023	0.35
2024	0.00
2025	0.00
2026	0.00
2027	0.00
2028	0.00
2029	0.00
2030	0.00
2031	0.00
2032	0.00
2033	0.00
2034	0.00
2035	0.00
2036	0.00
2037	0.00
2038	0.00

Table 7.2.5 Project Construction Emissions for Construction Waste Management

Year	Construction waste management (ktCO2e)
2019	0.00
2020	0.00
2021	1.62
2022	1.62
2023	0.73
2024	0.00
2025	0.00
2026	0.00
2027	0.00
2028	0.00
2029	0.00
2030	0.00

Year	Construction waste management (ktCO2e
2031	0.00
2032	0.00
2033	0.00
2034	0.00
2035	0.00
2036	0.00
2037	0.00
2038	0.00

Table 7.2.6 Project Construction Emissions for Water Use in Construction

Year	Construction water use (ktCO2e)	
2019	0.00	
2020	0.00	
2021	0.01	
2022	0.01	
2023	0.00	
2024	0.00	
2025	0.00	
2026	0.00	
2027	0.00	
2028	0.00	
2029	0.00	
2030	0.00	
2031	0.00	
2032	0.00	
2033	0.00	
2034	0.00	
2035	0.00	
2036	0.00	
2037	0.00	
2038	0.00	

	Operationa	Operational emissions by source (ktCO2e)					
ear	Grid electricity (Gatwick Airport Ltd)	Grid electricity (3rd parties)	Natural Gas (Gatwick Airport Ltd)	Natural Gas (3rd parties)	Fuel use of vehicles		
18	24.24	2.54	10.52	3.38	7.69		
19	18.46	2.64	9.77	4.07	7.15		
20	1.52	2.54	0.83	4.07	0.93		
21	9.20	2.08	6.00	4.07	5.33		
22	10.05	1.93	7.02	4.07	5.74		
23	11.72	2.02	7.78	4.07	5.99		
24	11.89	1.88	8.40	4.07	6.21		
25	12.94	1.90	8.97	4.07	6.47		
26	12.96	1.78	9.49	4.07	6.77		
27	14.70	1.90	9.99	4.07	7.05		
28	14.62	1.87	10.40	4.38	7.25		
29	13.44	1.72	10.27	4.38	7.14		
30	12.24	1.55	10.28	4.38	7.05		
31	10.88	1.37	10.39	4.38	6.95		
32	9.24	1.16	10.50	4.46	6.86		
33	8.63	1.08	10.58	4.46	6.77		
34	7.54	0.94	10.65	4.46	6.68		
35	6.29	0.78	10.73	4.46	6.58		
36	6.34	0.78	10.81	4.46	6.49		
37	6.38	0.78	10.90	4.46	6.39		
38	6.43	0.78	10.98	4.46	6.30		

Year	Grid electricity (Gatwick Airport Ltd)	Grid electricity (3rd parties)	Natural Gas (Gatwick Airport Ltd)	Natural Gas (3rd parties)	Fuel use of vehicles
2018	24.24	2.54	10.52	3.38	7.69
2019	18.46	2.64	9.77	4.07	7.15
2020	1.52	2.54	0.83	4.07	0.93
2021	9.20	2.08	6.00	4.07	5.33
2022	10.05	1.93	7.02	4.07	5.74
2023	11.72	2.02	7.78	4.07	5.99
2024	11.89	1.88	8.40	4.07	6.21
2025	12.94	1.90	8.97	4.07	6.47
2026	12.96	1.78	9.49	4.07	6.77
2027	14.70	1.90	9.99	4.07	7.05
2028	14.62	1.87	10.40	4.38	7.25
2029	13.44	1.72	10.27	4.38	7.14
2030	12.24	1.55	10.28	4.38	7.05
2031	10.88	1.37	10.39	4.38	6.95
2032	9.24	1.16	10.50	4.46	6.86
2033	8.63	1.08	10.58	4.46	6.77
2034	7.54	0.94	10.65	4.46	6.68
2035	6.29	0.78	10.73	4.46	6.58
2036	6.34	0.78	10.81	4.46	6.49
2037	6.38	0.78	10.90	4.46	6.39
2038	6.43	0.78	10.98	4.46	6.30

Airport Operation

7.3

7.3.1

Emissions from energy consumption for operation of airport buildings, 3rd party buildings within the study area, and use of fuel in vehicles and equipment are set out in Table 7.3.1.

Table 7.3.1: Emissions from Energy Use

management are set out in Table 7.4.1.

Table 7.4.1: Emissions from Water Supply, Wastewater Treatment and Waste Management

Year	Operational emissions by source (ktCO2e)					
	Water supply	Waste water treatment	Waste management			
2018	0.237	0.450	0.294			
2019	0.243	0.462	0.302			
2020	0.108	0.182	0.311			
2021	0.111	0.187	0.319			
2022	0.114	0.192	0.328			
2023	0.117	0.197	0.336			
2024	0.120	0.202	0.344			
2025	0.123	0.207	0.352			
2026	0.126	0.211	0.361			
2027	0.131	0.220	0.376			
2028	0.136	0.229	0.391			
2029	0.141	0.238	0.406			
2030	0.143	0.240	0.410			
2031	0.144	0.243	0.414			
2032	0.146	0.245	0.418			
2033	0.147	0.248	0.422			
2034	0.148	0.250	0.426			
2035	0.150	0.252	0.430			
2036	0.151	0.255	0.434			
2037	0.153	0.257	0.439			
2038	0.154	0.259	0.443			

Year	Operational emissions by source (ktCO2e)				
	APUs	Engine testing	GSE	Fire training	
2022	23.33	0.35	8.27	0.07	
2023	23.51	0.35	8.22	0.07	
2024	23.69	0.35	8.16	0.07	
2025	23.87	0.35	8.11	0.07	
2026	24.04	0.36	8.05	0.07	
2027	24.22	0.36	7.99	0.07	
2028	24.40	0.36	7.94	0.07	
2029	24.57	0.36	7.88	0.07	
2030	24.29	0.36	7.78	0.07	
2031	24.00	0.35	7.68	0.07	
2032	23.71	0.35	7.58	0.07	
2033	23.68	0.35	7.48	0.07	
2034	23.64	0.35	7.37	0.07	
2035	23.60	0.35	7.27	0.07	
2036	23.57	0.35	7.16	0.07	
2037	23.53	0.34	7.06	0.07	
2038	23.49	0.34	6.95	0.07	

Surface Access

7.6.1 Surface access emissions are set out in Table 7.6.1.

Table 7.6.1: Emissions from Surface Access

Year	Surface access emissions by type (ktCO2e)				
Tear	Passengers	Staff	Freight		
2018	256.16	48.42	3.56		
2019	260.35	47.93	3.68		
2020	262.74	47.50	3.79		
2021	266.98	47.10	3.91		
2022	270.97	46.65	4.03		
2023	275.29	46.33	4.15		
2024	279.59	46.03	4.27		
2025	283.48	45.61	4.39		
2026	287.86	45.38	4.51		
2027	297.80	45.64	4.72		
2028	307.29	45.80	4.93		
2029	317.22	46.12	5.14		

	Surface access emissions by type (ktCO2e)			
'ear	Passengers	Staff	Freight	
030	318.46	45.78	5.21	
031	319.40	45.36	5.28	
032	320.95	45.13	5.34	
033	322.64	44.95	5.41	
034	324.00	44.67	5.48	
035	325.90	44.56	5.55	
036	327.88	44.47	5.61	
037	329.49	44.28	5.68	
038	331.59	44.24	5.75	
.7 Aircraft Emissions.7.1 Future baseline emissions from aviation are set out in Table				
	7.7.1.			

Tabl **Aviation emissi** UK Year LTO CCD 2018 27.2 49.5 2019 26.9 49.3 2020 3.3 6.2 2021 19.2 35.7 21.8 40.9 2022 2023 23.9 45.1 48.0 2024 25.3 2025 25.0 47.7 47.5 24.7 2026 2027 24.4 47.2 2028 24.0 47.0 2029 23.7 46.7 2030 23.5 46.5 2031 23.3 46.3 23.1 46.1 2032 2033 23.1 45.9 2034 23.1 45.7

7.5 Other Fuel Use

7.5.1 Emissions from other fuel uses within the study area are set out in Table 7.5.1.

Table 7.5.1: Emissions from Other Fuel Uses

Year	Operational emissions by source (ktCO2e)				
i cai	APUs	Engine testing	GSE	Fire training	
2018	22.63	0.34	8.49	0.07	
2019	22.80	0.34	8.44	0.07	
2020	22.98	0.34	8.38	0.07	
2021	23.16	0.34	8.33	0.07	

Preliminary Environmental Information Report: September 2021 Appendix 15.4.1: Climate Change and Carbon Technical Appendix

ions (ktCO2e)					
	Non-domestic EEA		Non-EEA International		
	LTO	CCD	LTO	CCD	
	225.2	1,345.9	145.9	2,927.5	
	226.9	1,360.9	147.1	2,986.3	
	28.8	173.5	18.7	384.1	
	168.6	1,018.1	109.4	2,272.4	
	195.5	1,184.4	126.9	2,665.0	
	218.4	1,327.2	141.8	3,010.1	
	235.5	1,435.5	153.0	3,280.6	
	237.2	1,450.4	154.1	3,339.4	
	238.9	1,465.4	155.3	3,398.3	
	240.7	1,480.3	156.5	3,457.1	
	242.4	1,495.2	157.7	3,516.0	
	244.1	1,510.2	158.9	3,574.8	
	241.1	1,507.5	154.8	3,573.2	
	238.2	1,504.9	150.7	3,571.5	
	235.2	1,502.2	146.7	3,569.8	
	235.2	1,506.6	146.7	3,602.7	
	235.2	1,511.0	146.7	3,635.7	

	Aviatio	n emission	s (ktCO2e)				
Year	ик		Non-do EEA	Non-domestic EEA		Non-EEA International	
	LTO	CCD	LTO	CCD	LTO	CCD	
2035	23.1	45.5	235.2	1,515.4	146.7	3,668.6	
2036	23.1	45.2	235.2	1,519.8	146.7	3,701.5	
2037	23.1	45.0	235.2	1,524.1	146.7	3,734.5	
2038	23.1	44.8	235.2	1,528.5	146.7	3,767.4	

Future Traded Sector Emissions 7.8

7.8.1 Traded emissions in the future baseline from aviation and from operation of the airport by Gatwick Airport Ltd are presented in Table 7.8.1.

Year	Traded sector emissions (ktCO2e)	
2018	1,658.3	
2019	1,673.7	
2020	212.7	
2021	1,247.6	
2022	1,449.6	
2023	1,622.5	
2024	1,752.7	
2025	1,769.3	
2026	1,785.9	
2027	1,802.5	
2028	1,819.0	
2029	1,834.0	
2030	1,828.9	
2031	1,823.0	
2032	1,817.1	
2033	1,821.3	
2034	1,825.6	
2035	1,829.8	
2036	1,834.1	
2037	1,838.4	
2038	1,842.6	

Assessment of Effects from Project Construction

Categorised Project Construction Emissions

Construction related emissions have been calculated across six source categories:

- embodied carbon in the extraction and manufacture of • materials/products;
- operation of plant for construction, including operation of the construction compounds;
- transportation of construction materials to the Project site;
- transportation of construction workers to/from the Project site:
- construction waste management; and
- water use in construction.

8.1.2

The future construction-related emissions for the Project are presented in these categories in Table 8.1.1 to Table 8.1.6.

Table 8.1.1: Project Construction Emissions for Embodied Carbon of Materials Embodied carbon of construction materials Year (cradle-gate) ktCO2e

2019	0.00
2020	0.00
2021	0.00
2022	0.00
2023	0.00
2024	117.14
2025	166.61
2026	82.67
2027	67.31
2028	67.98
2029	62.18
2030	95.48
2031	163.68
2032	111.62
2033	46.22
2034	0.00
2035	0.00
2036	0.00

Year	Embod (cradle
2037	0.00
2038	0.00

Construction

Year	Constr
2019	0.00
2020	0.00
2021	0.00
2022	0.00
2023	0.00
2024	33.05
2025	29.65
2026	51.81
2027	43.57
2028	46.09
2029	35.69
2030	18.39
2031	14.40
2032	11.91
2033	7.92
2034	4.05
2035	3.11
2036	0.00
2037	0.00
2038	0.00

Materials

Year	Transp
2019	0.00
2020	0.00
2021	0.00
2022	0.00
2023	0.00
2024	22.73
2025	47.45

Our northern runway: making best use of Gatwick

lied carbon of construction materials -gate) ktCO2e

Table 8.1.2: Project Construction Emissions for Energy Use during

ruction energy (ktCO2e)		

Table 8.1.3: Project Construction Emissions for Transportation of

portation of construction materials (ktCO2e)		

Year	Transportation of construction materials (ktCO2e)
2026	24.96
2027	13.34
2028	15.59
2029	12.59
2030	15.92
2031	24.48
2032	13.82
2033	5.33
2034	3.70
2035	0.06
2036	0.00
2037	0.00
2038	0.00

Table 8.1.4: Project Construction Emissions for Commuting of **Construction Workers**

Year	Construction worker transport (ktCO2e)
2019	0.00
2020	0.00
2021	0.00
2022	0.18
2023	0.74
2024	3.33
2025	2.79
2026	4.04
2027	3.51
2028	3.59
2029	3.29
2030	3.15
2031	2.10
2032	1.39
2033	0.92
2034	0.56
2035	0.48
2036	0.00
2037	0.00
2038	0.00

Table 8.1.5: Project Construction Emissions for Construction Waste
Management

X		2
Year	Construction waste management (ktCO2e)	2
2019	0.00	2
2020	0.00	2
2021	0.00	2
2022	0.00	2
2023	0.00	2
2024	10.46	2
2025	24.05	
2026	12.67	8.2
2027	3.12	8.2
2028	2.84	
2029	3.62	_
2030	3.82	Та
2031	3.74	Y
2032	0.01	'
2033	0.01	2
2034	0.01	2
2035	0.01	2
2036	0.00	2
2037	0.00	2
2038	0.00	2
		2

Table 8.1.6: Project Construction Emissions for Water Use in Construction

Year	Construction water use (ktCO2e)
2019	0.00
2020	0.00
2021	0.00
2022	0.00
2023	0.00
2024	0.03
2025	0.06
2026	0.05
2027	0.04
2028	0.05
2029	0.03
2030	0.04

Year	Constru
2031	0.01
2032	0.01
2033	0.00
2034	0.00
2035	0.00
2036	0.00
2037	0.00
2038	0.00

Construction Emissions Time Series

8.2.1 8.2.1.

Table 8.2.1: Aggregated Project Construction Emissions by Year

Year		Aggree
2019		0.00
2020		0.00
2021		0.00
2022		0.18
2023		0.74
2024		186.74
2025		270.60
2026		176.20
2027		130.87
2028		136.13
2029		117.41
2030		136.79
2031		208.41
2032		138.76
2033		60.41
2034		41.15
2035		5.59
2036		0.00
2037		0.00
2038		0.00
8.3	2029 A	Assessr
8.3.1	The 202	9 constr

Our northern runway: making best use of Gatwick

uction water use (ktCO2e)

The aggregated construction emissions are presented in Table

gated construction emissions (ktCO2e)		

ment of Construction Emissions

The 2029 construction assessment is set out in Table 8.3.1.

Table 8.3.1: 2029 Assessment of Construction

Waste Management

Year

2018

2019

2020

2021

2022

2023

2024

2025 2026

2027 2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

9.3

9.3.1

Activity	Construction emissions (ktCO2e)
Construction	
GHGs arising from the extraction, processing and manufacturing of construction materials	62.18
GHGs arising from energy use in construction activities (ie operation of plant etc)	35.69
GHGs arising from transportation of materials from factory to site	12.59
GHGs arising from surface access for construction staff arising from the Project	3.29
GHGs arising from waste management of construction and demolition waste	3.62
Water use in construction	0.03
Total construction emissions	117.41

- 8.4 2038 Assessment of Construction Emissions
- 8.4.1 There is no construction within the Project in 2038 and therefore all construction emissions are taken to be zero.
- 8.5 Aggregated Construction Emissions
- 8.5.1 The aggregated construction emission across the full construction period for the Project (excluding baseline construction emissions) and incorporating all sources set out above, are 1,610 ktCO2e.

Assessment of Effects from Operation 9 with the Project

- 9.1 **Airport Operation**
- 9.1.1 Emissions from energy consumption for operation of airport buildings, 3rd party buildings and use of fuel in vehicles and equipment for the Project are set out in Table 9.1.1.

	Operational emissions by source (ktCO2e)					
Year	Grid electricity (Gatwick Airport Ltd)	Grid electricity (3rd parties)	Natural Gas (Gatwick Airport Ltd)	Natural Gas (3rd parties)	Fuel use of vehicles	
2018	24.24	2.54	10.52	3.38	7.69	
2019	18.23	2.64	9.01	4.07	6.96	
2020	1.39	2.54	0.73	4.07	0.90	
2021	9.03	2.08	3.27	4.07	5.03	
2022	9.83	1.93	3.61	4.07	5.34	
2023	11.42	2.02	3.79	4.07	5.48	
2024	11.52	1.88	3.87	4.07	5.59	
2025	12.49	1.90	3.91	4.07	5.72	
2026	12.49	1.78	3.99	4.07	5.87	
2027	14.11	1.90	3.97	4.07	5.99	
2028	14.07	2.02	3.94	5.01	6.03	
2029	13.87	2.09	3.55	5.46	6.18	
2030	13.29	1.89	3.34	5.46	6.25	
2031	12.33	1.66	3.17	5.46	6.29	
2032	10.87	1.49	3.00	6.08	6.27	
2033	10.15	1.38	2.84	6.08	6.01	
2034	8.89	1.20	2.66	6.08	5.75	
2035	7.40	0.99	2.49	6.08	5.49	
2036	7.46	0.99	2.33	6.08	5.23	
2037	7.53	0.99	2.16	6.08	4.96	
2038	7.59	0.99	1.99	6.08	4.70	

9.2 Water, Wastewater and Waste Management

9.2.1

Emissions from potable water, wastewater treatment and waste

management for the Project are set out in Table 9.2.1.

9.3.1

Our northern runway: making best use of Gatwick

Operational emissions by source (ktCO2e)				
Water supply	Wastewater treatment	Waste management		
0.237	0.450	0.294		
0.243	0.462	0.302		
0.108	0.182	0.311		
0.111	0.187	0.319		
0.114	0.192	0.328		
0.117	0.197	0.336		
0.120	0.202	0.344		
0.123	0.207	0.352		
0.126	0.211	0.361		
0.134	0.226	0.385		
0.143	0.240	0.410		
0.151	0.255	0.435		
0.155	0.261	0.446		
0.159	0.268	0.457		
0.163	0.275	0.468		
0.167	0.281	0.480		
0.171	0.288	0.491		
0.175	0.294	0.502		
0.179	0.301	0.513		
0.183	0.307	0.525		
0.187	0.314	0.536		

Table 9.2.1: Emissions from Water Supply, Wastewater Treatment and

Other fuel use

Emissions from other fuel uses for the Project are set out in Table

Table 9.3.1: Emissions from Other Fuel Uses

Year	Operational emissions by source (ktCO2e)					
	APUs	Engine testing	GSE	Fire training		
2018	22.63	0.34	8.49	0.07		
2019	22.99	0.34	8.34	0.07		
2020	23.35	0.35	8.19	0.07		
2021	23.71	0.35	8.04	0.07		
2022	24.08	0.35	7.89	0.07		
2023	24.44	0.36	7.73	0.07		
2024	24.80	0.36	7.58	0.07		
2025	25.16	0.37	7.43	0.07		
2026	25.53	0.37	7.28	0.07		
2027	25.89	0.37	7.13	0.07		
2028	26.25	0.38	6.97	0.07		
2029	26.62	0.38	6.82	0.07		
2030	27.42	0.39	6.85	0.07		
2031	28.23	0.41	6.89	0.07		
2032	29.03	0.42	6.92	0.07		
2033	28.97	0.42	6.63	0.07		
2034	28.91	0.41	6.35	0.07		
2035	28.84	0.41	6.06	0.07		
2036	28.78	0.41	5.77	0.07		
2037	28.72	0.41	5.48	0.07		
2038	28.65	0.41	5.19	0.07		

Surface access emissions for the Project are set out in Table 9.4.1 9.4.1

Table 9.4.1: Emissions from Surface Access

Year	Surface access emissions by type (ktCO2e)				
	Passengers	Staff	Freight		
2018	256.16	48.42	3.56		
2019	260.35	47.93	3.68		
2020	262.74	47.50	3.79		
2021	266.98	47.10	3.91		
2022	270.97	46.65	4.03		

Preliminary Environmental Information Report: September 2021 Appendix 15.4.1: Climate Change and Carbon Technical Appendix

Veee	Surface access	emissions by typ	e (ktCO2e)
Year	Passengers	Staff	Freight
2023	275.29	46.33	4.15
2024	279.59	46.03	4.27
2025	283.48	45.61	4.39
2026	287.86	45.38	4.51
2027	305.35	46.16	4.89
2028	322.28	46.81	5.28
2029	339.56	47.61	5.66
2030	346.25	47.60	5.85
2031	352.54	47.50	6.03
2032	359.43	47.59	6.21
2033	366.44	47.72	6.39
2034	373.02	47.75	6.57
2035	380.19	47.94	6.75
2036	387.41	48.16	6.93
2037	394.15	48.26	7.11
2038	401.45	48.51	7.29

Aircraft Emissions

9.5

9.5.1

Future emissions from aviation for the Project are set out in Table 9.5.1.

Table 9.5.1: Emissions from Aircraft

Year	Aviatio	n emission	s (ktCO2e)			
	UK		Non-domes EEA		Non-EEA International	
	LTO	CCD	LTO	CCD	LTO	CCD
2018	27.2	49.5	225.2	1,345.9	145.9	2,927.5
2019	26.9	49.5	227.8	1,369.0	148.0	3,014.5
2020	3.4	6.2	29.1	175.6	18.9	391.2
2021	19.3	36.2	170.7	1,035.9	111.5	2,334.2
2022	22.0	41.7	198.7	1,211.7	130.1	2,759.8
2023	24.2	46.3	222.8	1,365.1	146.2	3,141.5
2024	25.6	49.5	241.2	1,484.2	158.6	3,449.4
2025	25.3	49.5	243.8	1,507.2	160.7	3,536.4
2026	25.1	49.5	246.5	1,530.2	162.8	3,623.4
2027	24.8	49.5	249.1	1,553.3	165.0	3,710.4

Year	Aviation emissions (ktCO2e)						
	ик		Non-do EEA	Non-domestic EEA		Non-EEA International	
	LTO	CCD	LTO	CCD	LTO	CCD	
2028	24.6	49.5	251.8	1,576.3	167.1	3,797.4	
2029	24.3	49.5	254.5	1,599.3	169.2	3,884.4	
2030	25.3	51.2	263.9	1,670.3	173.1	4,089.2	
2031	26.2	53.0	273.3	1,741.2	177.0	4,294.1	
2032	27.2	54.7	282.7	1,812.1	180.9	4,498.9	
2033	27.2	54.4	282.7	1,815.4	180.9	4,530.0	
2034	27.2	54.1	282.7	1,818.7	180.9	4,561.0	
2035	27.2	53.9	282.7	1,822.0	180.9	4,592.1	
2036	27.2	53.6	282.7	1,825.3	180.9	4,623.2	
2037	27.2	53.3	282.7	1,828.6	180.9	4,654.3	
2038	27.2	53.0	282.7	1,831.9	180.9	4,685.4	
9.6	Future	e Traded S	Sector Em	issions	1	1	
9.6.1				e Project fro wick Airport			

Table 9.6.1.

Table 9.6.1: Traded Sector

Year	Traded sector emissions (ktCO2e)
2018	1,658.3
2019	1,682.3
2020	215.0
2021	1,265.5
2022	1,477.7
2023	1,662.1
2024	1,804.3
2025	1,829.8
2026	1,855.3
2027	1,880.7
2028	1,906.1
2029	1,931.1
2030	2,014.0
2031	2,096.9
2032	2,179.8

r	Emis	sions	for	the	Project	
---	------	-------	-----	-----	---------	--

Year	Traded sector emissions (ktCO2e)
2033	2,182.6
2034	2,185.4
2035	2,188.3
2036	2,191.1
2037	2,194.0
2038	2,196.8

Assessment of 'Worst Case' Year 10

10.1 Aggregated Emissions

The Airports NPS requires consideration of 'worst case' year. The 10.1.1 aggregated emissions from all sources are summarised below. This includes all construction activity (both the baseline construction activities and with the inclusion of Project construction emissions).

Table 10.1.1: Aggregated Emissions from the Project versus Baseline Emissions

Year	Baseline emissions (ktCO ₂)	Project emissions (ktCO ₂)	Difference from baseline (ktCO ₂)
2018	5,110	5,110	0
2019	5,184	5,221	+ 37
2020	971	981	+ 10
2021	4,042	412	+ 81
2022	4,659	4,785	+ 126
2023	5,175	5,351	+ 176
2024	5,573	5,985	+ 412
2025	5,655	6,189	+ 534
2026	5,736	6,214	+ 478
2027	5,825	6,304	+ 478
2028	5,912	6,443	+ 530
2029	5,998	6,557	+ 560
2030	5,985	6,875	+ 890
2031	5,972	7,245	+ 1,273
2032	5,959	7,474	+ 1,514
2033	5,997	7,435	+ 1,438
2034	6,034	7,454	+ 1,421
2035	6,071	7,458	+ 1,387

Preliminary Environmental Information Report: September 2021 Appendix 15.4.1: Climate Change and Carbon Technical Appendix

Year	Baseline emissions (ktCO ₂)	Project emissions (ktCO ₂)	Difference from baseline (ktCO ₂)
2036	6,110	7,493	+ 1,383
2037	6,149	7,534	+ 1,385
2038	6,188	7,575	+ 1,387

10.1.2 The year with highest emissions is 2038, where aggregate emissions total 7,575 ktCO2e. This is 1,387 ktCO2e higher than the baseline for that year.

10.1.3 The year where Project emissions exceed baseline emissions to the greatest extent is 2032, where aggregate emissions total 7,474 ktCO₂e, which is 1,514 ktCO₂e greater than the baseline.

Projected UK Aviation Emissions to 2050

11

11.1.1 An estimate of emissions from aviation in 2050 based on the delivery of the Project has been developed based on expected changes in ATMs through to 2050. For the main case no changes in efficiency between 2038 and 2050 have been assumed. A second scenario has been modelled which includes for improved efficiency of aircraft over that period in line with the CCC Balanced Pathway for Net Zero, which assumed an improvement of 1.4% per year. No SAF replacement is assumed in the figures below. Summary aviation emissions for the period 2038 to 2050 with, and without, the efficiency trend are presented in Tables 11.1.1 and 11.1.2 respectively.

Table 11.1.1: Projected UK Aviation Emissions to 2050 with no Efficiency Improvement between 2038 and 2050 and with No Use of SAF

Year	Domestic flights (MtCO ₂)	All flights (MtCO ₂)
2038	0.080	7.061
2039	0.080	7.103
2040	0.080	7.145
2041	0.081	7.186
2042	0.081	7.227
2043	0.081	7.267
2044	0.081	7.308
2045	0.081	7.349
2046	0.081	7.390
2047	0.081	7.431

Our northern runway: making best use of Gatwick

Year	Domestic flights (MtCO ₂)	All flights (MtCO ₂)
2048	0.081	7.471
2049	0.081	7.512
2050	0.081	7.512

Table 11.1.2: Projected UK Aviation Emissions to 2050 with 1.4% p.a. Efficiency Improvement between 2038 and 2050 and with No Use of SAF

Year	Domestic flights (MtCO ₂)	All flights (MtCO ₂)
2038	0.080	7.061
2039	0.080	7.103
2040	0.079	7.045
2041	0.078	6.986
2042	0.077	6.927
2043	0.076	6.869
2044	0.075	6.811
2045	0.074	6.753
2046	0.073	6.695
2047	0.072	6.638
2048	0.071	6.581
2049	0.071	6.524
2050	0.070	6.433

12 References

Circular Ecology Ltd. (2019) Embodied energy and carbon - The ICE database version 3.

Civil Aviation Authority (2018) 2018 Passenger survey report.

Committee on Climate Change (CCC) (2019) Net Zero - the UK's contribution to stopping global warming.

Construction Industry Training Board (2019) Workforce Mobility and Skills in the UK Construction Sector 2018/19.

Department for Business, Energy & Industrial Strategy (2018) BEIS GHG conversion factors.

Department for Business, Energy & Industrial Strategy (2021) BEIS GHG conversion factors.

Department for Business, Energy & Industrial Strategy (2019) Green Book supplementary guidance: valuation of energy use and greenhouse gas emissions for appraisal.

Department for Transport (2018) Airports National Policy Statement

Department for Transport (2021a) TAG Data Book. Forecasts for efficiency Webtag data book, tab A1.3.9

Department for Transport (2021b) TAG Data Book. Forecasts for efficiency Webtag data book, tab A1.3.10

European Environment Agency (2019) EMEP/EEA air pollutant emission inventory guidebook 2019: Technical guidance to prepare national emission inventories. Inventory Guidebook Additional File 1.A.3.a Aviation - Annex 5 - Master emission calculator 2019. No 13/2019.

Gatwick Airport Ltd 2018 Greenhouse Gas Assessment (RSK, 2019)

Oxford Economics (2018) Gatwick' economic contribution.

Glossary 13

13.1 Glossary of terms

Table 13.1.1: Glossary of Terms

Term	Description
APU	Auxiliary Power Unit
ATM	Air Traffic Movement
BEIS	UK Government Department for Business Energy and
DEIO	Industrial Strategy
BEV	Battery Electric Vehicles
CAA	Civil Aviation Authority
CCD	Climb, Cruise and Descent
CO ₂	Carbon Dioxide
CO ₂ e	Carbon Dioxide Equivalent
DCO	Development Consent Order
EEA	European Economic Area
EMEP	European Monitoring and Evaluation Programme
ES	Environmental Statement
EU ETS	European Union Emissions Trading Scheme

Term	Description
FEGP	Fixed Electrical Ground Power
GHG	Greenhouse Gas
GPU	Ground Power Unit
GSE	Ground Support Equipment
HGV	Heavy Goods Vehicle
ICE	Inventory of Carbon and Energy
LGW	London Gatwick
LTO	Landing and Take Off
PEIR	Preliminary Environmental Information Report
PHEV	Plug-in Hybrid Electric Vehicle
RIBA	Royal Institute of British Architects
TAG	Transport Analysis Guidance